Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Curr Opin Pediatr ; 35(3): 380-389, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20243856

ABSTRACT

PURPOSE OF REVIEW: To review the epidemiology, clinical manifestations, and treatment strategies of nonpolio enterovirus and parechovirus (PeV) infections, and identify research gaps. RECENT FINDINGS: There is currently no approved antiviral agent for enterovirus or PeV infections, although pocapavir may be provided on a compassionate basis. Elucidation of the structure and functional features of enterovirus and PeV may lead to novel therapeutic strategies, including vaccine development. SUMMARY: Nonpolio human enterovirus and PeV are common childhood infections that are most severe among neonates and young infants. Although most infections are asymptomatic, severe disease resulting in substantial morbidity and mortality occurs worldwide and has been associated with local outbreaks. Long-term sequelae are not well understood but have been reported following neonatal infection of the central nervous system. The lack of antiviral treatment and effective vaccines highlight important knowledge gaps. Active surveillance ultimately may inform preventive strategies.


Subject(s)
Enterovirus Infections , Enterovirus , Parechovirus , Picornaviridae Infections , Infant, Newborn , Infant , Humans , Child , Parechovirus/genetics , Enterovirus Infections/diagnosis , Enterovirus Infections/drug therapy , Enterovirus Infections/epidemiology , Antiviral Agents/therapeutic use , Disease Outbreaks/prevention & control , Picornaviridae Infections/diagnosis , Picornaviridae Infections/drug therapy , Picornaviridae Infections/epidemiology
2.
BMC Infect Dis ; 23(1): 254, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2298464

ABSTRACT

BACKGROUND: To reduce the burden from the COVID-19 pandemic in the United States, federal and state local governments implemented restrictions such as limitations on gatherings, restaurant dining, and travel, and recommended non-pharmaceutical interventions including physical distancing, mask-wearing, surface disinfection, and increased hand hygiene. Resulting behavioral changes impacted other infectious diseases including enteropathogens such as norovirus and rotavirus, which had fairly regular seasonal patterns prior to the COVID-19 pandemic. The study objective was to project future incidence of norovirus and rotavirus gastroenteritis as contacts resumed and other NPIs are relaxed. METHODS: We fitted compartmental mathematical models to pre-pandemic U.S. surveillance data (2012-2019) for norovirus and rotavirus using maximum likelihood estimation. Then, we projected incidence for 2022-2030 under scenarios where the number of contacts a person has per day varies from70%, 80%, 90%, and full resumption (100%) of pre-pandemic levels. RESULTS: We found that the population susceptibility to both viruses increased between March 2020 and November 2021. The 70-90% contact resumption scenarios led to lower incidence than observed pre-pandemic for both viruses. However, we found a greater than two-fold increase in community incidence relative to the pre-pandemic period under the 100% contact scenarios for both viruses. With rotavirus, for which population immunity is driven partially by vaccination, patterns settled into a new steady state quickly in 2022 under the 70-90% scenarios. For norovirus, for which immunity is relatively short-lasting and only acquired through infection, surged under the 100% contact scenario projection. CONCLUSIONS: These results, which quantify the consequences of population susceptibility build-up, can help public health agencies prepare for potential resurgence of enteric viruses.


Subject(s)
COVID-19 , Caliciviridae Infections , Enterovirus Infections , Gastroenteritis , Norovirus , Rotavirus Infections , Rotavirus , Viruses , Humans , United States/epidemiology , COVID-19/epidemiology , Pandemics , Gastroenteritis/epidemiology , Rotavirus Infections/epidemiology , Enterovirus Infections/epidemiology , Caliciviridae Infections/epidemiology , Models, Theoretical
3.
Infect Genet Evol ; 111: 105432, 2023 07.
Article in English | MEDLINE | ID: covidwho-2293208

ABSTRACT

Outbreaks of HFMD in children aged <5 years have been reported worldwide and the major causative agents are Coxsackievirus (CV) A16, enterovirus (EV)-A71 and recently CVA6. In India, HFMD is a disease that is not commonly reported. The purpose of the study was to identify the enterovirus type(s) associated with large outbreak of Hand, foot, and mouth disease during COVID-19 pandemic in 2022. Four hundred and twenty five clinical samples from 196-suspected cases were collected from different parts of the country. This finding indicated the emergence of CVA6 in HFMD along with CVA16, soon after the gradual easing of non-pharmaceutical interventions during-pandemic COVID-19 and the relevance of continued surveillance of circulating enterovirus types in the post-COVID pandemic era.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Child , Humans , Hand, Foot and Mouth Disease/epidemiology , Pandemics , COVID-19/epidemiology , Enterovirus/genetics , Enterovirus Infections/epidemiology , Disease Outbreaks , India/epidemiology , China/epidemiology
4.
Food Environ Virol ; 15(2): 176-191, 2023 06.
Article in English | MEDLINE | ID: covidwho-2296583

ABSTRACT

Viruses remain the leading cause of acute gastroenteritis (AGE) worldwide. Recently, we reported the abundance of AGE viruses in raw sewage water (SW) during the COVID-19 pandemic, when viral AGE patients decreased dramatically in clinics. Since clinical samples were not reflecting the actual state, it remained important to determine the circulating strains in the SW for preparedness against impending outbreaks. Raw SW was collected from a sewage treatment plant in Japan from August 2018 to March 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major gastroenteritis viruses by RT-PCR. Genotypes and evolutionary relationships were evaluated through sequence-based analyses. Major AGE viruses like rotavirus A (RVA), norovirus (NoV) GI and GII, and astrovirus (AstV) increased sharply (10-20%) in SW during the COVID-19 pandemic, though some AGE viruses like sapovirus (SV), adenovirus (AdV), and enterovirus (EV) decreased slightly (3-10%). The prevalence remained top in the winter. Importantly, several strains, including G1 and G3 of RVA, GI.1 and GII.2 of NoV, GI.1 of SV, MLB1 of AstV, and F41 of AdV, either emerged or increased amid the pandemic, suggesting that the normal phenomenon of genotype changing remained active over this time. This study crucially presents the molecular characteristics of circulating AGE viruses, explaining the importance of SW investigation during the pandemic when a clinical investigation may not produce the complete scenario.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Gastroenteritis , Norovirus , RNA Viruses , Rotavirus , Sapovirus , Viruses , Humans , Wastewater , Pandemics , Sewage , Viruses/genetics , Rotavirus/genetics , Norovirus/genetics , Sapovirus/genetics , Enterovirus Infections/epidemiology , Adenoviridae/genetics , Genotype , Phylogeny , Feces
5.
Microbiol Spectr ; 11(3): e0363222, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2263471

ABSTRACT

Continuous surveillance of enteroviruses (EVs) in urban domestic sewage can timely reflect the circulation of EVs in the environment and crowds, and play a predictive and early warning role in EV-related diseases. To better understand the long-term epidemiological trends of circulating EVs and EV-related diseases, we conducted a 9-year (2013 to 2021) surveillance study of non-polio EVs (NPEVs) in urban sewage in Guangzhou city, China. After concentrating and isolating the viruses from the sewage samples, NPEVs were detected and molecular typing was performed. Twenty-one different NPEV serotypes were identified. The most isolated EVs were echovirus 11 (E11), followed by coxsackievirus (CV) B5, E6, and CVB3. EV species B prevailed in sewage samples, but variations in the annual frequency of different serotypes were also observed in different seasons, due to spatial and temporal factors. E11 and E6 were detected continuously before 2017, and the number of isolates was relatively stable during the surveillance period. However, after their explosive growth in 2018 and 2019, their numbers suddenly decreased significantly. CVB3 and CVB5 had alternating trends; CVB5 was most frequently detected in 2013 to 2014 and 2017 to 2018, while CVB3 was most frequently detected in 2015 to 2016 and 2020 to 2021. Phylogenetic analysis showed that at least two different transmission chains of CVB3 and CVB5 were prevalent in Guangzhou City. Our results show that in the absence of a comprehensive and systematic EV-related disease surveillance system in China, environmental surveillance is a powerful and effective tool to strengthen and further investigate the invisible transmission of EVs in the population. IMPORTANCE This study surveilled urban sewage samples from north China for 9 years to monitor enteroviruses. Samples were collected, processed, and viral identification and molecular typing were performed. We detected 21 different non-polio enteroviruses (NPEVs) with yearly variations in prevalence and peak seasons. In addition, this study is very important for understanding the epidemiology of EVs during the COVID-19 pandemic, as the detection frequency and serotypes of EVs in sewage changed considerably around 2020. We believe that our study makes a significant contribution to the literature because our results strongly suggest that environmental surveillance is an exceptionally important tool, which can be employed to detect and monitor organisms of public health concern, which would otherwise be missed and under-reported by case-based surveillance systems alone.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Poliomyelitis , Humans , Sewage , Prevalence , Phylogeny , Pandemics , COVID-19/epidemiology , Enterovirus Infections/epidemiology , Antigens, Viral , China/epidemiology
7.
Postgrad Med J ; 99(1171): 372-374, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-2247836

ABSTRACT

In March 2020, WHO declared SARS-CoV-2 a global pandemic and lockdowns were enforced in most of the United States. Self-protective measures and travel restrictions were implemented, and schools/universities initiated online learning. Consequently, the global incidence and hospitalization rates of seasonal respiratory infections decreased significantly up to early 2021. Despite the decrease in hospitalization rates due to respiratory illnesses other than Covid-19, hospitals and healthcare providers faced huge stressors regarding workload dueto the pandemic. Furthermore, higher vaccination rates across the United States decreased non pharmaceutical interventions (NPI) implementation increasing the risk of major seasonal viral outbreaks. This editorial discusses the increased Rhinovirus/Enterovirus infections in the United States, challenges faced by healthcare providers and provides recommendations to address the issue.


Subject(s)
COVID-19 , Communicable Diseases , Enterovirus D, Human , Enterovirus Infections , Influenza, Human , Humans , United States/epidemiology , Enterovirus Infections/epidemiology , Rhinovirus , Pandemics/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , SARS-CoV-2 , Communicable Disease Control , Health Personnel
8.
JAMA Netw Open ; 6(2): e2254909, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2234746

ABSTRACT

Importance: Rhinoviruses and/or enteroviruses, which continued to circulate during the COVID-19 pandemic, are commonly detected in pediatric patients with acute respiratory illness (ARI). Yet detailed characterization of rhinovirus and/or enterovirus detection over time is limited, especially by age group and health care setting. Objective: To quantify and characterize rhinovirus and/or enterovirus detection before and during the COVID-19 pandemic among children and adolescents seeking medical care for ARI at emergency departments (EDs) or hospitals. Design, Setting, and Participants: This cross-sectional study used data from the New Vaccine Surveillance Network (NVSN), a multicenter, active, prospective surveillance platform, for pediatric patients who sought medical care for fever and/or respiratory symptoms at 7 EDs or hospitals within NVSN across the US between December 2016 and February 2021. Persons younger than 18 years were enrolled in NVSN, and respiratory specimens were collected and tested for multiple viruses. Main Outcomes and Measures: Proportion of patients in whom rhinovirus and/or enterovirus, or another virus, was detected by calendar month and by prepandemic (December 1, 2016, to March 11, 2020) or pandemic (March 12, 2020, to February 28, 2021) periods. Month-specific adjusted odds ratios (aORs) for rhinovirus and/or enterovirus-positive test results (among all tested) by setting (ED or inpatient) and age group (<2, 2-4, or 5-17 years) were calculated, comparing each month during the pandemic to equivalent months of previous years. Results: Of the 38 198 children and adolescents who were enrolled and tested, 11 303 (29.6%; mean [SD] age, 2.8 [3.7] years; 6733 boys [59.6%]) had rhinovirus and/or enterovirus-positive test results. In prepandemic and pandemic periods, rhinoviruses and/or enteroviruses were detected in 29.4% (9795 of 33 317) and 30.9% (1508 of 4881) of all patients who were enrolled and tested and in 42.2% (9795 of 23 236) and 73.0% (1508 of 2066) of those with test positivity for any virus, respectively. Rhinoviruses and/or enteroviruses were the most frequently detected viruses in both periods and all age groups in the ED and inpatient setting. From April to September 2020 (pandemic period), rhinoviruses and/or enteroviruses were detectable at similar or lower odds than in prepandemic years, with aORs ranging from 0.08 (95% CI, 0.04-0.19) to 0.76 (95% CI, 0.55-1.05) in the ED and 0.04 (95% CI, 0.01-0.11) to 0.71 (95% CI, 0.47-1.07) in the inpatient setting. However, unlike some other viruses, rhinoviruses and/or enteroviruses soon returned to prepandemic levels and from October 2020 to February 2021 were detected at similar or higher odds than in prepandemic months in both settings, with aORs ranging from 1.47 (95% CI, 1.12-1.93) to 3.01 (95% CI, 2.30-3.94) in the ED and 1.36 (95% CI, 1.03-1.79) to 2.44 (95% CI, 1.78-3.34) in the inpatient setting, and in all age groups. Compared with prepandemic years, during the pandemic, rhinoviruses and/or enteroviruses were detected in patients who were slightly older, although most (74.5% [1124 of 1508]) were younger than 5 years. Conclusions and Relevance: Results of this study show that rhinoviruses and/or enteroviruses persisted and were the most common respiratory virus group detected across all pediatric age groups and in both ED and inpatient settings. Rhinoviruses and/or enteroviruses remain a leading factor in ARI health care burden, and active ARI surveillance in children and adolescents remains critical for defining the health care burden of respiratory viruses.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Male , Adolescent , Child , Humans , Child, Preschool , Rhinovirus , Pandemics , Prospective Studies , Cross-Sectional Studies , COVID-19/epidemiology , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology
9.
J Clin Virol ; 160: 105381, 2023 03.
Article in English | MEDLINE | ID: covidwho-2210735

ABSTRACT

BACKGROUND: Enteroviruses (EV) and parechovirus (PeV) are a common cause of CNS infection in children. Both viruses demonstrate consistent seasonal patterns, with detections mainly in the summer-fall months. While research has shown COVID-19 pandemic-related disruption of traditional seasonality of respiratory pathogens, the pandemic's impact on non-respiratory pathogens is less understood. The aim of this study was to quantify the EV/PeV seasonal variations during pre-COVID years compared to variations observed during the COVID pandemic. METHODS: Patients with EV/PeV testing of CSF/plasma between January 2012 through September 2022 were identified. Restricted cubic spline methods were used to model the detections. Poisson models were utilized to model pre-COVID (2012-2019) EV/PeV detections. The expected seasonal trends from these models were then compared to the observed EV/PeV detections during the COVID pandemic (2020-2022). RESULTS: A total of 5199 patients were included. The annual pre-pandemic proportion of EV detections ranged between 7.5%-20.3%. PeV exhibited a biennial pattern with peak proportions between 8.0%-16.3%. EV/PeV detections during the COVID pandemic period, especially during 2020 and 2021, were considerably lower than would have been expected based on pre-pandemic modeling. However, PeV detections from January through September 2022 nearly reached the pre-pandemic modeled expectation, including instances of exceeded expectations. CONCLUSIONS: A significant disruption in expected seasonal EV/PeV detections was observed during the early phases of the COVID-19 pandemic. However, testing that occurred during summer-fall of 2022, when social mitigation initiatives were relaxed, showed a rapid increase in detections. Additional data are needed to further understand which public health initiatives are effective at decreasing EV/PeV transmission.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Parechovirus , Picornaviridae Infections , Humans , Child , Infant , Picornaviridae Infections/epidemiology , Seasons , Pandemics , Enterovirus Infections/epidemiology
10.
MMWR Morb Mortal Wkly Rep ; 71(40): 1265-1270, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2056549

ABSTRACT

Increases in severe respiratory illness and acute flaccid myelitis (AFM) among children and adolescents resulting from enterovirus D68 (EV-D68) infections occurred biennially in the United States during 2014, 2016, and 2018, primarily in late summer and fall. Although EV-D68 annual trends are not fully understood, EV-D68 levels were lower than expected in 2020, potentially because of implementation of COVID-19 mitigation measures (e.g., wearing face masks, enhanced hand hygiene, and physical distancing) (1). In August 2022, clinicians in several geographic areas notified CDC of an increase in hospitalizations of pediatric patients with severe respiratory illness and positive rhinovirus/enterovirus (RV/EV) test results.* Surveillance data were analyzed from multiple national data sources to characterize reported trends in acute respiratory illness (ARI), asthma/reactive airway disease (RAD) exacerbations, and the percentage of positive RV/EV and EV-D68 test results during 2022 compared with previous years. These data demonstrated an increase in emergency department (ED) visits by children and adolescents with ARI and asthma/RAD in late summer 2022. The percentage of positive RV/EV test results in national laboratory-based surveillance and the percentage of positive EV-D68 test results in pediatric sentinel surveillance also increased during this time. Previous increases in EV-D68 respiratory illness have led to substantial resource demands in some hospitals and have also coincided with increases in cases of AFM (2), a rare but serious neurologic disease affecting the spinal cord. Therefore, clinicians should consider AFM in patients with acute flaccid limb weakness, especially after respiratory illness or fever, and ensure prompt hospitalization and referral to specialty care for such cases. Clinicians should also test for poliovirus infection in patients suspected of having AFM because of the clinical similarity to acute flaccid paralysis caused by poliovirus. Ongoing surveillance for EV-D68 is critical to ensuring preparedness for possible future increases in ARI and AFM.


Subject(s)
Asthma , COVID-19 , Enterovirus D, Human , Enterovirus Infections , Myelitis , Respiratory Tract Infections , Adolescent , Asthma/epidemiology , Central Nervous System Viral Diseases , Child , Disease Outbreaks , Enterovirus Infections/epidemiology , Humans , Myelitis/epidemiology , Neuromuscular Diseases , Respiratory Tract Infections/epidemiology , Rhinovirus , United States/epidemiology
11.
J Med Virol ; 94(11): 5547-5552, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1981876

ABSTRACT

Rhinoviruses have persisted throughout the COVID-19 pandemic, despite other seasonal respiratory viruses (influenza, parainfluenza, respiratory syncytial virus, adenoviruses, human metapneumovirus) being mostly suppressed by pandemic restrictions, such as masking and other forms of social distancing, especially during the national lockdown periods. Rhinoviruses, as nonenveloped viruses, are known to transmit effectively via the airborne and fomite route, which has allowed infection among children and adults to continue despite pandemic restrictions. Rhinoviruses are also known to cause and exacerbate acute wheezing episodes in children predisposed to this condition. Noninfectious causes such as air pollutants (PM2.5 , PM10 ) can also play a role. In this retrospective ecological study, we demonstrate the correlation between UK national sentinel rhinovirus surveillance, the level of airborne particulates, and the changing patterns of pediatric emergency department presentations for acute wheezing, before and during the COVID-19 pandemic (2018-2021) in a large UK teaching hospital.


Subject(s)
COVID-19 , Enterovirus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Adult , COVID-19/epidemiology , Child , Communicable Disease Control , Enterovirus Infections/epidemiology , Humans , Pandemics , Respiratory Sounds/etiology , Retrospective Studies , Rhinovirus
12.
J Clin Virol ; 154: 105245, 2022 09.
Article in English | MEDLINE | ID: covidwho-1956198

ABSTRACT

INTRODUCTION: Hand, foot, and mouth disease (HFMD) is an acute febrile illness characterized by fever; sore throat; and vesicular eruptions on the hands, feet, and oral mucosa. Outbreaks of HFMD in children aged <5 years have been reported worldwide and the major causative agents are Coxsackievirus (CV)A16, enterovirus (EV)-A71 and recently CVA6. AIM AND METHODS: The aim of this study was to investigated a large outbreak of Hand, foot, and mouth disease during COVID-19 pandemic in 2021 from clinical samples of 315 suspected cases, in São Paulo State, Brazil. Diagnostic evaluation was performed by RT-qPCR, culture cell isolation and serological neutralization assay. EV-positive were genotyped by partial VP1 genome sequencing. RESULTS: One hundred and forty-nine cases analyzed were positive for enterovirus (47.3%; n = 149/315) by neutralizing test (n = 10 patients) and RT-qPCR (n = 139 patients), and identified as CVA6 sub-lineage D3 by analysis of VP1 partial sequences. CONCLUSIONS: This finding indicated the reemergence of CVA6 in HFMD, soon after the gradual easing of non-pharmaceutical interventions during-pandemic COVID-19 and the relevance of continued surveillance of circulating enterovirus types in the post-COVID pandemic era.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Brazil/epidemiology , COVID-19/epidemiology , Child , China/epidemiology , Disease Outbreaks , Enterovirus Infections/epidemiology , Hand, Foot and Mouth Disease/epidemiology , Humans , Infant , Pandemics
13.
J Infect Dis ; 226(Suppl 3): S304-S314, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-1908832

ABSTRACT

BACKGROUND: Rhinovirus (RV) is a common cause of respiratory illness in all people, including those experiencing homelessness. RV epidemiology in homeless shelters is unknown. METHODS: We analyzed data from a cross-sectional homeless shelter study in King County, Washington, October 2019-May 2021. Shelter residents or guardians aged ≥3 months reporting acute respiratory illness completed questionnaires and submitted nasal swabs. After 1 April 2020, enrollment expanded to residents and staff regardless of symptoms. Samples were tested by multiplex RT-PCR for respiratory viruses. A subset of RV-positive samples was sequenced. RESULTS: There were 1066 RV-positive samples with RV present every month of the study period. RV was the most common virus before and during the coronavirus disease 2019 (COVID-19) pandemic (43% and 77% of virus-positive samples, respectively). Participants from family shelters had the highest prevalence of RV. Among 131 sequenced samples, 33 RV serotypes were identified with each serotype detected for ≤4 months. CONCLUSIONS: RV infections persisted through community mitigation measures and were most prevalent in shelters housing families. Sequencing showed a diversity of circulating RV serotypes, each detected over short periods of time. Community-based surveillance in congregate settings is important to characterize respiratory viral infections during and after the COVID-19 pandemic. CLINICAL TRIALS REGISTRATION: NCT04141917.


Subject(s)
COVID-19 , Enterovirus Infections , Ill-Housed Persons , Viruses , COVID-19/epidemiology , Cross-Sectional Studies , Enterovirus Infections/epidemiology , Genomics , Humans , Pandemics , Rhinovirus/genetics , Washington/epidemiology
14.
J Infect Public Health ; 15(5): 594-598, 2022 May.
Article in English | MEDLINE | ID: covidwho-1882236

ABSTRACT

BACKGROUND: Appropriate mitigation strategy to minimize enterovirus (EV) transmission among children is essential to control severe EV epidemics. Scientific evidence for the effectiveness of case isolation and class suspension is lacking. METHODS: EV-infected children ≤ eight years are asked to stay at home for seven days. Classes were suspended for seven days if there are more than two classmates having an onset of herpangina or hand, foot, and mouth disease in one classroom within one week. Study subjects are divided into two groups, group A with class suspension for one week and group B without class suspension. RESULTS: Among 4153 reported EV-infected children from 1085 classes in May and June, 2015 were enrolled. Median incidence of EV infection in a class was 7% (range 3% -60%). The incidence was higher in group A (median 14%, range 3-60%) than that in group B (median 6%, range 3-80%) (P < 0.01). The median incidence is highest in day care center (20%), followed by kindergarten (8%), and primary school (4%) (P < 0.01). Most secondary cases in group A appeared within seven days after the disease onset of index case in the same class. The incidence of EV infection remained low and was similar between the two groups eight days and beyond after the disease onset of index cases. CONCLUSIONS: Targeted class suspension for seven days with case isolation for seven days is an effective measure to mitigate transmission of EV infection in children.


Subject(s)
Enterovirus Infections , Enterovirus , Epidemics , Hand, Foot and Mouth Disease , Herpangina , Child , Enterovirus Infections/epidemiology , Enterovirus Infections/prevention & control , Hand, Foot and Mouth Disease/epidemiology , Herpangina/epidemiology , Humans , Infant
15.
J Infect Dev Ctries ; 16(5): 857-863, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1879506

ABSTRACT

INTRODUCTION: Viruses are responsible for two-thirds of all acute respiratory tract infections. This study aims to retrospectively detect respiratory tract viruses in patients from all age groups who visited the hospital. METHODOLOGY: A total of 1592 samples from 1416 patients with respiratory tract symptoms were sent from several clinics to the Molecular Microbiology Laboratory at Gazi University Hospital from February 2016 to January 2019. Nucleic acid extraction from nasopharyngeal swabs, throat swabs or bronchoalveolar lavage (BAL) samples sent to our laboratory was done using a commercial automated system. Extracted nucleic acids were amplified by a commercial multiplex-real time Polymerase Chain Reaction (PCR) method, which can detect 18 viral respiratory pathogens. RESULTS: Among 1592 samples, 914 (57.4%) were positive for respiratory viruses. The most prevalent were rhinovirus (25.2%) and influenza A virus (12.1%), the least prevalent was the bocavirus (2.6%). Rhinovirus was the most detected as a single agent (21.2%, 194/914) among all positive cases, followed by coronavirus (9.3%, 85/914). The detection rates of coronavirus, human adenovirus, respiratory syncytial virus A/B, human parainfluenza viruses, human metapneumovirus-A/B, human parechovirus, enterovirus and influenza B virus were 9.9%, 8%, 7.7%, 5%, 3.4%, 3.1%, 3%, and 2.8%, respectively. CONCLUSIONS: The most detected viral agents in our study were influenza A virus and rhinovirus. Laboratory diagnosis of respiratory viruses is helpful to prevent unnecessary antibiotic use and is essential in routine diagnostics for antiviral treatment. Multiplex Real-time PCR method is fast and useful for the diagnosis of viral respiratory infections.


Subject(s)
Coronavirus Infections , Enterovirus Infections , Influenza, Human , Picornaviridae Infections , Respiratory Tract Infections , Coronavirus , Coronavirus Infections/epidemiology , Enterovirus Infections/epidemiology , Hospitals, University , Humans , Influenza A virus , Influenza, Human/epidemiology , Picornaviridae Infections/epidemiology , Respiratory Syncytial Viruses , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Turkey/epidemiology
16.
Viruses ; 14(5)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1875804

ABSTRACT

Enterovirus D68 (EVD68) was recently identified as an important cause of respiratory illness and acute flaccid myelitis (AFM), mostly in children. Here, we examined 472 pediatric patients diagnosed with severe respiratory illness and screened for EVD68 between April and October 2021. In parallel, samples collected from a wastewater treatment plant (WWTP) covering the residential area of the hospitalized patients were also tested for EVD68. Of the 472 clinical samples evaluated, 33 (7%) patients were positive for EVD68 RNA. All wastewater samples were positive for EVD68, with varying viral genome copy loads. Calculated EVD68 genome copies increased from the end of May until July 2021 and dramatically decreased at the beginning of August. A similar trend was observed in both clinical and wastewater samples during the period tested. Sequence analysis of EVD68-positive samples indicated that all samples originated from the same branch of subclade B3. This study is the first to use wastewater-based epidemiology (WBE) to monitor EVD68 dynamics by quantitative detection and shows a clear correlation with clinically diagnosed cases. These findings highlight the potential of WBE as an important tool for continuous surveillance of EVD68 and other enteroviruses.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Child , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Humans , Israel/epidemiology , Wastewater
17.
PLoS Pathog ; 18(5): e1010515, 2022 05.
Article in English | MEDLINE | ID: covidwho-1875097

ABSTRACT

Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome ('whole genome') sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68's rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.


Subject(s)
COVID-19 , Enterovirus D, Human , Enterovirus Infections , Respiratory Tract Infections , Adult , Aged , Child , Demography , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Humans , Phylogeny , SARS-CoV-2
18.
J Med Virol ; 94(10): 4696-4703, 2022 10.
Article in English | MEDLINE | ID: covidwho-1866551

ABSTRACT

Nonpharmaceutical interventions (NPIs) taken to combat the coronavirus disease 2019 (COVID-19) pandemic have not only decreased the spread of severe acute respiratory syndrome coronavirus 2 but also have had an impact on the prevalence of other common viruses. This study aimed to investigate the long-term impact of NPIs on common respiratory and enteric viruses among children in Shanghai, China, as NPIs were relaxed after June 2020. The laboratory results and clinical data of outpatient children with acute respiratory tract infections (ARTI) and acute gastroenteritis (AGE) were analyzed and compared between the post-COVID-19 period (from June 2020 to January 2022) and pre-COVID-19 period (from June 2018 to January 2020). A total of 107 453 patients were enrolled from June 2018 to January 2022, including 43 190 patients with ARTI and 64 263 patients with AGE. The positive rates of most viruses decreased during the post-COVID-19 period, with the greatest decrease for influenza A (-0.94%), followed by adenoviruses (AdV) (-61.54%), rotaviruses (-48.17%), and influenza B (-40%). However, the positive rates of respiratory syncytial virus (RSV) and enteric AdV increased during the post-COVID-19 period as the NPIs were relaxed. Besides this, in the summer of 2021, an unexpected out-of-season resurgence of RSV activity was observed, and the resurgence was more prominent among children older than 5 years. The effectiveness of the current relaxed NPIs in control of common respiratory and enteric viruses was variable. Relaxation of NPIs might lead to the resurgence of common viruses.


Subject(s)
COVID-19 , Enterovirus Infections , Influenza, Human , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Antigens, Viral , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Enterovirus Infections/epidemiology , Humans , Influenza, Human/epidemiology , Outpatients , Pandemics , Respiratory Tract Infections/epidemiology
19.
J Med Virol ; 94(8): 3581-3588, 2022 08.
Article in English | MEDLINE | ID: covidwho-1802453

ABSTRACT

Precise prevention and control measures have been adopted to impede the transmission of coronavirus disease 2019 (COVID-19) in China. This study was performed to investigate the effect of protective measures on gastrointestinal infection in children during the COVID-19 pandemic. The data on the rotavirus and adenovirus antigen tests were collected in outpatient children due to gastroenteritis from January 1, 2019 to December 31, 2020, at the Children's Hospital of Zhejiang University School of Medicine. According to age and month distribution, the positive number and rate of rotavirus and adenovirus in 2020 were compared with 2019. A 3.8-fold and 4-fold reduction in the number of rotavirus- and adenovirus-positive patients in 2020 were found, respectively. The overall positive rate of rotavirus and adenovirus infection was drastically decreased in 2020 (rotavirus 2020: 18.18% vs. 2019: 9.75%, p < 0.001; adenovirus 2020: 3.13% vs. 2019: 1.58%, p < 0.001). The proportions of rotavirus and adenovirus in all age groups in 2020 decreased compared with those in 2019. The highest frequency of rotavirus infection occurred among children aged 1-3 years both in 2019 and 2020 (2019: 27.95% vs. 2020: 17.19%, p < 0.001), while adenovirus infection was detected in children aged 3-5 years, which had the highest percent positivity (2019: 8.19% vs. 2020: 4.46%; p < 0.001). An obvious peak prevalence of rotavirus incidence was found during December-April, and the percent positivity of rotavirus significantly decreased in 2020 (December 2019: 24.26% vs. 2020: 8.44%, p < 0.001; January 2019: 40.67% vs. 2020: 38.18%, p < 0.05; February 2019: 40.73% vs. 2020: 15.04%, p < 0.001; March 2019: 31.47% vs. 2020: 7.88%, p < 0.001; April 2019: 15.52% vs. 2020: 4.78%, p < 0.001). The positive rate of adenovirus distributed throughout 2019 was 1.91%-4.86%, while the percent positivity during 2020 in the same period was much lower (0.00%-3.58%). Our results confirmed that the preventive and control measures adopted during the COVID-19 pandemic and the collateral benefit of these interventions have significantly decreased the transmission of rotavirus or adenovirus.


Subject(s)
Adenoviridae Infections , COVID-19 , Enterovirus Infections , Enterovirus , Rotavirus Infections , Rotavirus , Adenoviridae , Adenoviridae Infections/epidemiology , Antigens, Viral , COVID-19/epidemiology , COVID-19/prevention & control , Child , Enterovirus Infections/epidemiology , Feces , Humans , Infant , Pandemics/prevention & control , Rotavirus Infections/epidemiology , Seasons
20.
Euro Surveill ; 26(45)2021 Nov.
Article in English | MEDLINE | ID: covidwho-1630353

ABSTRACT

We report a rapid increase in enterovirus D68 (EV-D68) infections, with 139 cases reported from eight European countries between 31 July and 14 October 2021. This upsurge is in line with the seasonality of EV-D68 and was presumably stimulated by the widespread reopening after COVID-19 lockdown. Most cases were identified in September, but more are to be expected in the coming months. Reinforcement of clinical awareness, diagnostic capacities and surveillance of EV-D68 is urgently needed in Europe.


Subject(s)
COVID-19 , Enterovirus D, Human , Enterovirus Infections , Enterovirus , Myelitis , Respiratory Tract Infections , Communicable Disease Control , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Europe/epidemiology , Humans , Myelitis/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL